工業(yè)制造在標(biāo)準(zhǔn)、互聯(lián)等領(lǐng)域始終是很特殊的,現(xiàn)在談工業(yè)4.0與AI是否為時過早?AI在工業(yè)4.0時代是否真的在發(fā)揮作用,以及究竟發(fā)揮到何種程度?這是我們期望以由上至下的方式,從工業(yè)制造AI解決方案、AI芯片、EDA,以及實(shí)際應(yīng)用幾個層面,來窺見當(dāng)下工業(yè)制造的AI技術(shù)現(xiàn)狀…
意大利有家公司叫ROJ,這家企業(yè)專注于針對工業(yè)領(lǐng)域的電子技術(shù),產(chǎn)品典型如基于ARM Cortex-M/A、FPGA的工業(yè)板和模塊。這家公司有個特色,是“基于客戶軟件、硬件需求來提供個性化解決方案”。其典型客戶如Mares——這是個生產(chǎn)潛水裝備的企業(yè),包括潛水表。Mares的特色也在滿足不同客戶的產(chǎn)品定制化需求。而“定制化”就意味著產(chǎn)品生產(chǎn)周期必須短,制造響應(yīng)速度必須快,而且可能某一款產(chǎn)品的需求量還不大。實(shí)際上越來越多的制造商開始轉(zhuǎn)向這種量不大,但品種多樣的生產(chǎn)模式,這也是工業(yè)4.0的重要特點(diǎn)。HUxesmc
這在傳統(tǒng)的生產(chǎn)模式中是不可想象的,直到數(shù)字工廠、智能制造開始出現(xiàn):不同小訂單之間的不同需求,生產(chǎn)設(shè)備可以很方便地通過數(shù)字操控的方式實(shí)現(xiàn)轉(zhuǎn)變和協(xié)調(diào)——當(dāng)然還有IT/OT融合、TSN的出現(xiàn)、各類統(tǒng)一與融合標(biāo)準(zhǔn)在工業(yè)領(lǐng)域的出現(xiàn),都是實(shí)現(xiàn)這種操作的必要條件。不過這些不是本文要探討的核心。HUxesmc
ROJ在智能制造時,所選方案的其中一個關(guān)鍵是Valor Material Management材料管理系統(tǒng)——這是來自西門子數(shù)字工業(yè)軟件的一部分。ROJ首席執(zhí)行官Franco Oliaro曾表示:材料需要在正確的時間、正確的位置提供,而制造現(xiàn)場的停工往往是因?yàn)椴牧蠜]有到位。數(shù)字化的材料管理系統(tǒng)能做的就是材料分發(fā),在需要材料的時候確保其準(zhǔn)備就緒。HUxesmc
這個例子實(shí)際只是數(shù)字化生產(chǎn)和工業(yè)4.0的基本應(yīng)用。當(dāng)生產(chǎn)設(shè)備本身變得越來越復(fù)雜,越來越智能,就會產(chǎn)生海量數(shù)據(jù)。當(dāng)這些數(shù)據(jù)熔于一爐后做數(shù)據(jù)分析,不僅用以了解過去的生產(chǎn)狀況,同時利用機(jī)器學(xué)習(xí)還能提高未來生產(chǎn)質(zhì)量、降低制造成本,即是AI技術(shù)對工業(yè)4.0的推動了。HUxesmc
工業(yè)制造在標(biāo)準(zhǔn)、互聯(lián)等領(lǐng)域始終是很特殊的,現(xiàn)在談工業(yè)4.0與AI是否為時過早?AI在工業(yè)4.0時代是否真的在發(fā)揮作用,以及究竟發(fā)揮到何種程度?這是我們期望以由上至下的方式,從工業(yè)制造AI解決方案、AI芯片、EDA,以及實(shí)際應(yīng)用幾個層面,來窺見當(dāng)下工業(yè)制造的AI技術(shù)現(xiàn)狀。HUxesmc
“傳感器數(shù)據(jù)速率正在持續(xù)增長。大部分客戶現(xiàn)如今的工廠傳感器數(shù)據(jù)采集速率還在1Hz,但越來越多的芯片制造商收集速率達(dá)到了10Hz、100Hz。晶圓廠的數(shù)據(jù)量級現(xiàn)在開始進(jìn)入PB級別,而不再是MB或者TB。”BISTel首席執(zhí)行官W.K. Choi表示,“客戶需要更出色的分析來驅(qū)動產(chǎn)品質(zhì)量提升;工程師則期望更快地進(jìn)行根因分析,近實(shí)時地(in near real time)、準(zhǔn)確地解決影響良率和工程生產(chǎn)的問題。”這能說明什么問題?BISTel是一家提供智能制造解決方案的韓國企業(yè),解決方案離實(shí)際應(yīng)用總是靠的更近。HUxesmc
以半導(dǎo)體制造為例,我們先來看一個例子:晶圓制造發(fā)生不良率高的問題時,常規(guī)手法是工程師們調(diào)查并討論,這個過程一般需要很久。如W.K. Choi所說,實(shí)現(xiàn)數(shù)字生產(chǎn)的工廠,傳感器數(shù)據(jù)采集速率現(xiàn)如今已經(jīng)很高了。針對晶圓生產(chǎn)不良率高的問題,可觀察的參數(shù)至少包括溫度、振動、壓力等各項(xiàng)指標(biāo)。如果針對所有相關(guān)指標(biāo)做監(jiān)測,那么分析難度自然可以得到降低。在這個例子中,不少晶圓片靠近邊緣位置出現(xiàn)問題,因此成為“bad”晶圓。HUxesmc
HUxesmc
BISTel的HMP(Health Monitoring & Prediction)在數(shù)據(jù)追蹤中,系統(tǒng)列出總共6個導(dǎo)致良率問題的最優(yōu)關(guān)聯(lián)度參數(shù),其中前兩個分別是蝕刻工序的最后一步,電流發(fā)生激增;以及氦氣值明顯降低(圖1)。蝕刻流程的最后一步就是氦氣分離,這一例的“根因”就是在分離過程中,托盤與晶圓邊緣接觸,產(chǎn)生小范圍火花——所以電流出現(xiàn)了激增,與此同時托盤某些氦氣口堵塞造成氦氣值降低。HUxesmc
在晶圓制造良率問題的“根因分析”這一例中,至少能夠表現(xiàn)持續(xù)增長的“數(shù)據(jù)速率”是怎么回事,以及將原本需要以天、周為單位計(jì)的根因分析時間縮短到分鐘、小時級別內(nèi)。而AI技術(shù)在此處的核心,即如何利用海量數(shù)據(jù)做分析,并得出結(jié)論。HUxesmc
“具備AI能力的智能應(yīng)用,可讓系統(tǒng)和流程實(shí)現(xiàn)自動化,讓客戶得以近實(shí)時地針對每天的生產(chǎn)問題,做出檢測(detection)、分析(analyses)和預(yù)測(prediction)解決方案。”W.K. Choi說,“現(xiàn)在我們在生產(chǎn)流程中,融入了更多強(qiáng)有力的AI分析,能夠從這些流程中學(xué)習(xí)。我們隨后就會把這些新的智能,應(yīng)用到知識庫(knowledge base)中。”[!--empirenews.page--]HUxesmc
這里的“知識庫”即是AI在W.K. Choi所說“預(yù)測”中的大腦,其中包含所有“知識點(diǎn)”和解決方案,并通過學(xué)習(xí)不斷完善。這里再來看一個例子,在某晶圓廠半導(dǎo)體制造CVD(化學(xué)氣相沉積)流程中,追蹤發(fā)現(xiàn)某一天(本例為4月18日)出現(xiàn)了異常高的報(bào)警數(shù),很多晶圓質(zhì)量都受到影響(圖2)。報(bào)警內(nèi)容為:“TDS”設(shè)備某節(jié)氣閥發(fā)生位置偏移。如果這份數(shù)據(jù)拉長到為期半個月,那么很容易發(fā)現(xiàn),在高報(bào)警事件發(fā)生的前兩天,數(shù)據(jù)就已經(jīng)顯現(xiàn)出節(jié)氣閥位置發(fā)生潛在漂移——而且早在10天以前,前序壓力就因?yàn)楣?jié)氣閥位置偏移而出現(xiàn)不規(guī)則現(xiàn)象。HUxesmc
HUxesmc
那么實(shí)際在發(fā)生高報(bào)警數(shù)之前,通過預(yù)測性維護(hù)(Predictive Maintenance)就能率先預(yù)知問題,“在錯誤發(fā)生之前就預(yù)測到錯誤”,以避免故障停機(jī)時間,因此得以提升效率并節(jié)省成本。更多的“預(yù)測”行為還包括預(yù)測設(shè)備的剩余可用壽命(RUL),以及各種執(zhí)行基于條件的的預(yù)測性分析。HUxesmc
這里“基于條件”的預(yù)測性分析可認(rèn)為是智能制造的核心產(chǎn)物。就好像日常的汽車保養(yǎng),仍是基于時間或里程的:如每隔一個固定時間或固定行駛里程前往4S店做保養(yǎng);但如果能夠針對汽車發(fā)動機(jī)轉(zhuǎn)速、溫度、振動等各種參數(shù)做關(guān)聯(lián)分析和預(yù)測,則在綜合所有參數(shù)與AI分析過后,系統(tǒng)得出現(xiàn)在是否需要維護(hù)或下一次維護(hù)時間應(yīng)該是在什么時候,這才是節(jié)約保養(yǎng)成本、提高生產(chǎn)效率的最佳方案。HUxesmc
現(xiàn)在我們知道,AI在智能制造中的應(yīng)用,至少可有檢測、分析和預(yù)測三步驟。不過這依然不是AI的全部。在BISTel的定義中,AI能夠?qū)崿F(xiàn)的終極目標(biāo)遠(yuǎn)不止此。“AI應(yīng)用,可嵌入已習(xí)得的知識,并實(shí)現(xiàn)自動化操作;應(yīng)用AI獲取的知識庫,具備自主控制、自主治愈的能力。”HUxesmc
這句話強(qiáng)調(diào)的是AI學(xué)習(xí)的“自適應(yīng)”能力,全過程包括完全自主地發(fā)現(xiàn)問題、學(xué)習(xí)問題,并采取行動。工廠內(nèi)部的這個過程無需或少有人工干預(yù)。W.K. Choi說:“這是我們理想中的智能生產(chǎn)。”即便這一步尚未達(dá)成。HUxesmc
從上述解決方案的實(shí)例來看,AI如何部署似乎還不夠明朗。我們嘗試往下看解決方案底層的硬件支持。不難想見,上層AI應(yīng)用需求自然能夠帶動下層AI芯片或?qū):说呐d盛,比如工業(yè)現(xiàn)場生產(chǎn)用機(jī)械臂或電機(jī)內(nèi)部的MCU/SoC——畢竟我們反復(fù)在說AI這一技術(shù)熱點(diǎn)是貫徹在整個垂直行業(yè)的。HUxesmc
常規(guī)能夠想到的AI專核通常是具備高度并行計(jì)算能力+片上存儲+低精度計(jì)算的ASIC核心,尤其如果是特別針對某個具體的工業(yè)應(yīng)用場景。不過行業(yè)內(nèi)頗具代表性的瑞薩電子DRP(Dynamic Reconfigurable Processor)技術(shù),或稱e-AI(嵌入式AI,DRP是e-AI技術(shù)的一部分)在思路上還略有不同。這里還是先舉個例子。HUxesmc
HUxesmc
在圖3故障預(yù)判解決方案中,工業(yè)制造現(xiàn)場電機(jī)運(yùn)行時,可通過加速度傳感器來采集電機(jī)運(yùn)行振動情況,這些采集的數(shù)據(jù)上傳到云服務(wù)器,經(jīng)由云服務(wù)器的學(xué)習(xí)軟件做深度學(xué)習(xí)(基于谷歌TensorFlow神經(jīng)網(wǎng)絡(luò)架構(gòu));再由解釋器將高級語言AI模型翻譯成MCU可識別的機(jī)器語言,AI控制軟件將AI模型下載到本地e-AI單元,實(shí)現(xiàn)故障預(yù)判。HUxesmc
這套系統(tǒng)監(jiān)測的是電機(jī)運(yùn)行情況,并可預(yù)測其剩余使用壽命,屬于相當(dāng)?shù)湫偷腁I預(yù)測性維護(hù)使用場景。在這一例中,由于硬件的具象化,我們得以更清晰地理解預(yù)測性維護(hù)的流程是什么樣。瑞薩電子中國工業(yè)自動化事業(yè)部高級總監(jiān)徐征告訴我們,除了預(yù)測性維護(hù),e-AI還能用于異常檢測,提高質(zhì)量,自動化檢驗(yàn)。HUxesmc
“我們已經(jīng)在一些工業(yè)生產(chǎn)現(xiàn)場取得驗(yàn)證性測試結(jié)果,比如瑞薩電子那珂工廠,GE醫(yī)療(日本)日野工廠。那珂工廠的驗(yàn)證測試結(jié)果表明,以下三點(diǎn)在智慧工廠中是完全可行的:HUxesmc
- 使用AI識別異常結(jié)果。通過為復(fù)雜波形設(shè)置閾值,消除難點(diǎn)。HUxesmc
- 顯著減少錯誤信息,從每月每臺機(jī)器大約50條錯誤信息降低為零,消除工程師負(fù)擔(dān)。HUxesmc
- 準(zhǔn)確檢測異常結(jié)果。通過使用高分辨率數(shù)據(jù),將異常結(jié)果檢測率提高6倍以上。”[!--empirenews.page--]HUxesmc
HUxesmc
在我們的理解中,DRP在專用和通用,或者在性能和可編程性之間是個相對折中的方案。從結(jié)構(gòu)上來看,這種動態(tài)可重構(gòu)處理器包含可編程數(shù)據(jù)通道硬件(PE處理單元陣列)和狀態(tài)轉(zhuǎn)換控制器(完全可編程有限狀態(tài)機(jī)),是十分典型的軟件定義芯片(圖4),可針對工業(yè)嵌入式設(shè)備的AI推理(inference)做加速。HUxesmc
“算法的種類和大小可由同一個DRP硬件進(jìn)行時間復(fù)用處理。其靈活性非常適用于AI產(chǎn)業(yè)的DNN(深度神經(jīng)網(wǎng)絡(luò))的快速演化。”徐征表示,“DRP可對硬件資源和應(yīng)用場景做動態(tài)調(diào)整,做并發(fā)處理,幫助在后臺做很多場景的匹配和預(yù)處理。”例如對可動態(tài)加速圖像處理算法,達(dá)到相比通用CPU快10倍的速度。HUxesmc
類似DRP這類AI硬件的出現(xiàn),及在兼顧彈性基礎(chǔ)上對性能的追逐,實(shí)際都是智能制造開始全面步入AI的第一步。HUxesmc
在瑞薩電子的設(shè)想里,“首先會提供附加AI單元的解決方案以拓展市場,從而使e-AI實(shí)用性得到市場廣泛理解,再推進(jìn)工業(yè)終端設(shè)備e-AI預(yù)安裝解決方案普及。”徐征說。這段話大概是瑞薩電子推廣工業(yè)AI芯片的策略,但或許還能表明,智能制造和數(shù)字工廠的AI仍處在新生期,所以前期提供的是“附加AI單元”解決方案。HUxesmc
而從MCU/SoC的高度繼續(xù)再往下層或供應(yīng)鏈上層走,是EDA廠商。主流EDA廠商目前最特別的存在應(yīng)該就是Mentor了:這家公司在被西門子并購以后,劃歸西門子的“數(shù)字工廠(Digital Factory)”業(yè)務(wù)旗下,且愈發(fā)看重“工業(yè)軟件領(lǐng)域”的競爭力,而不只是以前那個,幫助系統(tǒng)與IC設(shè)計(jì)企業(yè)進(jìn)行高級印刷電路板和芯片設(shè)計(jì)的EDA廠商。HUxesmc
西門子當(dāng)年收購Mentor的業(yè)務(wù)邏輯一直被人多番揣測。Mentor中國區(qū)總經(jīng)理凌琳在接受采訪時表示:“我們絕大部分客戶,都同時使用機(jī)械和電子工具來設(shè)計(jì)、制造產(chǎn)品。為了讓機(jī)電一體化產(chǎn)品的設(shè)計(jì)、工程和制造更高效,一個集成性的軟件平臺就很重要。”西門子Mechatronics就是連接了機(jī)械和電子領(lǐng)域的解決方案。HUxesmc
西門子給予Mentor的投入,另外包括針對更多EDA相關(guān)企業(yè)的進(jìn)一步收購,如Sarakol、Infolytica、Austemper等,顯然是對上述策略的進(jìn)一步補(bǔ)全。好比Infolytica在低頻電磁模擬,包括電動馬達(dá)、發(fā)電機(jī)和電磁設(shè)備設(shè)計(jì)支持方面的能力。所以凌琳說“電子設(shè)計(jì)、機(jī)械設(shè)計(jì)領(lǐng)域的協(xié)同”,“提供了整個閉環(huán)的系統(tǒng)設(shè)計(jì)。”其中的業(yè)務(wù)邏輯也變得一目了然。這是Mentor受西門子影響之時,踐行“工業(yè)化之路”的代表。HUxesmc
用時下比較流行的話來說即數(shù)字復(fù)刻版(或稱數(shù)字孿生,digital twin)。這個詞更像是個營銷詞匯,EDA的仿真、驗(yàn)證原本就屬于典型的“數(shù)字復(fù)刻版”,是在芯片制造之前的數(shù)字復(fù)刻,只不過它是對微觀世界的復(fù)刻。西門子收購Mentor以后的復(fù)刻,則既包含宏觀世界的機(jī)械設(shè)計(jì),也包含電子設(shè)計(jì)。在這套“閉環(huán)系統(tǒng)“中打造的數(shù)字復(fù)刻版,包含了整個生產(chǎn)環(huán)境或價(jià)值鏈:產(chǎn)品本身、產(chǎn)品的制造和性能,以及產(chǎn)品制造流程的完整復(fù)刻。在生產(chǎn)或制造前期,就對數(shù)字世界的產(chǎn)品、機(jī)器和設(shè)施設(shè)備進(jìn)行仿真與優(yōu)化,確保后續(xù)真實(shí)世界的制造生產(chǎn)。HUxesmc
西門子2018財(cái)年數(shù)字工廠業(yè)務(wù)營收129.32億歐元,同比增長11%;西門子PLM技術(shù)軟件(現(xiàn)已更名為西門子數(shù)字工業(yè)軟件)一年?duì)I收約在42億美元左右。無論是西門子的“數(shù)字工廠”,還是西門子數(shù)字工業(yè)軟件公司,都能表征工業(yè)4.0帶來的經(jīng)濟(jì)效益,似乎比單純的EDA業(yè)務(wù)更有協(xié)同優(yōu)勢。不過也正因如此,Mentor的EDA廠商角色定位,令其在工業(yè)4.0+AI方面更具發(fā)言權(quán)。HUxesmc
HUxesmc
在機(jī)器學(xué)習(xí)IP方面,Mentor提供Catapult HLS AI/ML設(shè)計(jì)套裝,幫助芯片架構(gòu)師和設(shè)計(jì)師理解如何利用機(jī)器學(xué)習(xí)算法,以及構(gòu)建起低功耗的硬件加速器。它能夠展示如何將數(shù)字工具或DNN框架開發(fā)的算法,轉(zhuǎn)為可綜合(synthesizable)C/C++/SystemC代碼,并最終綜合為RTL芯片硬件設(shè)計(jì)語言。中間環(huán)節(jié)展示哪部分算法在處理器上執(zhí)行更高效,以及若執(zhí)行于IC專用硬件單元則能效比會是如何。[!--empirenews.page--]HUxesmc
這類方案是對AI應(yīng)用大門的進(jìn)一步拓寬,或許HLS高層次綜合不僅代表了Mentor的策略,它更像是AI在各領(lǐng)域?qū)崿F(xiàn)普及的趨勢,包括工業(yè)制造。當(dāng)然在此過程中,少不了應(yīng)用層做驗(yàn)證,包括協(xié)同建模(co-modeling)、Virtual-ICE、SW debug、性能監(jiān)測應(yīng)用等各種應(yīng)用驗(yàn)證技術(shù)。HUxesmc
除此之外,機(jī)器學(xué)習(xí)本身也在反哺EDA工具,比如在芯片測試期間,Tessent Yield Insight能夠告訴客戶和工廠,影響產(chǎn)量的錯誤究竟是出現(xiàn)在芯片設(shè)計(jì)環(huán)節(jié)還是制造環(huán)節(jié);還有利用機(jī)器學(xué)習(xí)提升芯片良率的Calibre Machine Learning OPC(機(jī)器學(xué)習(xí)鄰近效應(yīng)修正)和Calibre LFD with Machine Learning;甚至利用半導(dǎo)體制造數(shù)據(jù),來反饋設(shè)計(jì)優(yōu)化流程方案,“比如說,同時采用X光和AOI(自動光學(xué)檢測)的時候,我們可以判斷哪些層級X光可以略過,因?yàn)閄光是個慢速機(jī)器,經(jīng)常會成為制造瓶頸。”HUxesmc
AI的最有趣之處大概就在于,整個技術(shù)供應(yīng)鏈上的諸多環(huán)節(jié),既通過出售AI技術(shù)來賺錢,同時自己也是AI技術(shù)的使用者。Mentor這樣的EDA廠商大概就是最好的例證。在探討了智能制造解決方案提供商、AI芯片制造商以及EDA廠商這三個層級之后,我們大致上已經(jīng)將AI現(xiàn)階段在智慧工廠的價(jià)值勾勒出來了,即便從芯片制造商層級就不難發(fā)現(xiàn),AI技術(shù)在工業(yè)制造中仍在發(fā)展初期。HUxesmc
除了文首提及ROJ在數(shù)字工廠方面借由西門子方案的實(shí)現(xiàn),如今在世界范圍內(nèi)逐步發(fā)展智能制造乃至AI技術(shù)的先進(jìn)工廠大約也不在少數(shù)。前不久我們踏入林德(Linde)東亞區(qū)遠(yuǎn)程控制中心,可對智慧工廠的發(fā)展程度做管中一窺。林德是目前全球最大的氣體供應(yīng)商,其業(yè)務(wù)也涵蓋了為晶圓廠提供電子氣體。不過這里,我們不探討其作為半導(dǎo)體上游供應(yīng)商的價(jià)值,而將其作為智慧工廠的實(shí)踐者來審視一番。HUxesmc
HUxesmc
林德在中國大陸地區(qū)有總共350公里的管道,部分氣體就是通過管道供應(yīng)給客戶的。遠(yuǎn)程控制中心能夠?qū)艿老到y(tǒng)、空氣分離裝置、制氫裝置、食品級二氧化碳提純,進(jìn)行中央化的遠(yuǎn)程監(jiān)控。遠(yuǎn)程監(jiān)控設(shè)備,能夠顯示這些裝置和系統(tǒng)的運(yùn)行效率與狀態(tài),同時還能對數(shù)據(jù)進(jìn)行分析。HUxesmc
林德公司大中華區(qū)遠(yuǎn)程運(yùn)行中心總監(jiān)陸賢表示:“當(dāng)發(fā)現(xiàn)監(jiān)控的動設(shè)備參數(shù)有上升趨勢,就會結(jié)合當(dāng)時的設(shè)備運(yùn)行狀態(tài)進(jìn)行詳細(xì)分析,及時做出調(diào)整和相應(yīng)措施,包括對客戶供應(yīng)氣體的可靠性。”“數(shù)據(jù)趨勢往上走,雖然現(xiàn)在沒有報(bào)警,但就要開始準(zhǔn)備備件了。”“甚至通過對數(shù)據(jù)的分析,預(yù)測三個月后的情況。”這是數(shù)字工廠典型的實(shí)際應(yīng)用了,看起來很像預(yù)測性維護(hù)。HUxesmc
“小型制氮現(xiàn)場是無人的,大型空分現(xiàn)場也只配備最少的人員。”“一些大型空分、液體空分會有一套先進(jìn)控制系統(tǒng),可根據(jù)客戶的壓力、純度等波動,自動調(diào)整裝置負(fù)荷。超過設(shè)定值,客戶一側(cè)則會切換到備用系統(tǒng)。”HUxesmc
而在林德遠(yuǎn)程控制中心的數(shù)字化程度中,讓人感受“數(shù)字化”程度最深的是針對寧波的數(shù)字化管網(wǎng)控制。“寧波有82公里長的氮?dú)?、氧氣、氫氣系統(tǒng)裝置,沿著永江穿越市區(qū)。”在出現(xiàn)壓差較大等情況,發(fā)生報(bào)警時,遠(yuǎn)程控制中心就需要做出響應(yīng)。HUxesmc
控制中心的圖形化界面里,顯示了整個寧波的俯瞰3D圖——地圖通過無人機(jī)拍攝并做建模,其上清晰描繪林德氣體管線途經(jīng)的區(qū)域,甚至包括埋地管線。和谷歌地球一樣,遠(yuǎn)程控制中心的操作人員可對其進(jìn)行任意放大縮小操作,觀察氣體管道狀況,查看管道實(shí)時數(shù)據(jù),包括管道直徑、壓力、材料、所在高度等;甚至還能調(diào)取周期性的現(xiàn)場巡檢視頻。HUxesmc
在真正的機(jī)器學(xué)習(xí)實(shí)現(xiàn)上,“我們正在實(shí)施一個專家分析系統(tǒng),這個系統(tǒng)就是運(yùn)用機(jī)器學(xué)習(xí)相關(guān)技術(shù),通過數(shù)據(jù)的自動采集、分析,定期或不定期地完善搭建的模型,做到分析結(jié)果精確、運(yùn)行標(biāo)準(zhǔn)設(shè)置精確。”陸賢表示。HUxesmc
“我們未來運(yùn)行現(xiàn)場智能化包括,機(jī)器自我學(xué)習(xí),幫助我們更安全、高效、可靠地運(yùn)行裝置;建立更加精準(zhǔn)和有效的裝置能耗模型,監(jiān)控并優(yōu)化能源消耗情況;建立更智能的運(yùn)行培訓(xùn)工具——準(zhǔn)確模擬空分實(shí)際運(yùn)行,用以更高效地培養(yǎng)我們的工程師;大數(shù)據(jù)分析工具開發(fā),預(yù)測空分設(shè)備未來的運(yùn)行情況。”林德大中華區(qū)消費(fèi)市場營銷總監(jiān)陳聞翊表示。[!--empirenews.page--]HUxesmc
林德的遠(yuǎn)程控制中心實(shí)則已經(jīng)是現(xiàn)階段全球范圍內(nèi),在智能程度上比較領(lǐng)先的工廠中樞了,即便其氣體產(chǎn)品在生產(chǎn)領(lǐng)域具有一定的特殊性。其數(shù)字化程度早已顛覆我們對傳統(tǒng)工廠的認(rèn)知,不過機(jī)器學(xué)習(xí)的應(yīng)用仍在開發(fā)前期,包括預(yù)測性維護(hù)的進(jìn)一步完善也在他們的規(guī)劃中。HUxesmc
W.K. Choi在向我們解釋BISTel理念中的AI演進(jìn)階段時,將智慧工廠的付諸實(shí)現(xiàn)比作一次旅行。其中第一階段為具備AI能力的應(yīng)用,這一階段是在傳感器、生產(chǎn)流程、設(shè)備、工廠和設(shè)施中增加智能層,智能模塊跑在云IoT平臺上,實(shí)現(xiàn)最佳流程控制、最大化的自動化,并向自適應(yīng)智能邁出一大步。但“這個過程不是一夜之間就能完成的,它常常需要耗費(fèi)3年時間。”HUxesmc
第二階段,具備AI能力的工程系統(tǒng)。即向工程系統(tǒng)增加智能,這個階段需要大數(shù)據(jù)環(huán)境,智能模塊(inter-module)在系統(tǒng)、傳感器和設(shè)備間共享信息。所有的模塊彼此相互學(xué)習(xí),相互共享信息,而且是以自動化、有效的方式,還包括知識庫的更新。第三階段,具備AI能力的企業(yè)。這個階段,每個工程系統(tǒng)(inter-systems)與工廠中的其他軟件系統(tǒng)分享信息和知識,如MES、ERP、維護(hù)系統(tǒng)等。系統(tǒng)間實(shí)現(xiàn)互通與協(xié)作。HUxesmc
即便BISTel認(rèn)為,我們現(xiàn)在正處在第二階段,實(shí)際就我們的觀察,更多的制造工廠仍在第一階段構(gòu)建時期。不過這也正表明AI在工業(yè)4.0時代的發(fā)展?jié)摿?,這仍是惠及整個工業(yè)制造垂直領(lǐng)域的契機(jī)和利潤增長點(diǎn)。HUxesmc
本文為《國際電子商情》姐妹網(wǎng)站《電子工程專輯》12月刊雜志文章HUxesmc
微信掃一掃,一鍵轉(zhuǎn)發(fā)
關(guān)注“國際電子商情” 微信公眾號
各地政府興起智算中心建設(shè)熱潮。
知情人士表示,這筆交易可能很快就會達(dá)成。
AMD收購Silo AI,以在全球范圍內(nèi)擴(kuò)展企業(yè)AI解決方案。
國際電子商情5日獲悉,《2024全球獨(dú)角獸企業(yè)500強(qiáng)發(fā)展報(bào)告》于日前正式發(fā)布。從全球獨(dú)角獸企業(yè)500強(qiáng)總體格局來看,中美占比74.6%,中美雙強(qiáng)的格局依然沒有改變,但是中美全球獨(dú)角獸企業(yè)500強(qiáng)數(shù)量占比從2020年的81.8%下降到2024年的74.6%。
事關(guān)5700億大市場。
隨著人工智能(AI)在供應(yīng)鏈管理的深入應(yīng)用,用戶可以自動化耗時任務(wù),加速數(shù)據(jù)分析,并獲得采購網(wǎng)絡(luò)的透明度。但這也帶來了數(shù)據(jù)共享和使用的道德挑戰(zhàn),尤其是在確保數(shù)據(jù)合規(guī)性和安全性方面。
在萬物皆可AI的時代,沒有誰甘愿錯失大模型的風(fēng)口。
近幾年,MCU廠商的經(jīng)歷像極了坐過山車。2020-2021年因芯片產(chǎn)能受限,全球MCU市場供不應(yīng)求、價(jià)格“狂飆”,相關(guān)廠商迎來增長紅利期。但到2022-2023年,整個芯片市場陷入庫存積壓,MCU廠商不惜虧本降價(jià)清庫存,拼成本、殺價(jià)格、爭市占,持續(xù)高度內(nèi)卷的狀態(tài)。
蘋果最近發(fā)布了令人期待已久的AI戰(zhàn)略,不過,受《數(shù)字市場法》影響,該公司決定不會在今年在歐盟推出AI技術(shù)……
英偉達(dá)不止是一家芯片公司。
國際電子商情17日訊 得益于全球科技需求持續(xù)復(fù)蘇,韓國5月ICT產(chǎn)品出口再現(xiàn)佳績,增幅已連續(xù)兩個月超過30%…
前段時間,蘋果宣布取消Micro LED手表和自動駕駛項(xiàng)目,當(dāng)時就有分析師猜測,或與其重心轉(zhuǎn)移到人工智能(AI)上有關(guān)。最近,蘋果在全球開發(fā)者大會上發(fā)布了Apple Intelligence系統(tǒng),并宣布將為自家設(shè)備引入AI功能。很顯然,蘋果現(xiàn)在更看好AI的商用化,而被它放棄的Micro LED賽道,接下來會如何發(fā)展?
在各大半導(dǎo)體廠商搶攻AI商機(jī)之際,芯片產(chǎn)能卻趕不上需求。
TrendForce集邦咨詢預(yù)估AI服務(wù)器第2季出貨量將季增近20%,全年出貨量上修至167萬臺,年增率達(dá)41.5%。
根據(jù)TrendForce集邦咨詢最新存儲器產(chǎn)業(yè)分析報(bào)告,受惠于位元需求成長、供需結(jié)構(gòu)改善拉升價(jià)格,加上HBM(高帶寬內(nèi)
根據(jù)TrendForce集邦咨詢最新存儲器產(chǎn)業(yè)分析報(bào)告,受惠于位元需求成長、供需結(jié)構(gòu)改善拉升價(jià)格,加上HBM(高帶寬內(nèi)
近日,中國科學(xué)院上海微系統(tǒng)與信息技術(shù)研究所宋志棠、雷宇研究團(tuán)隊(duì),在三維相變存儲器(3D PCM)亞閾值讀取電路、高
7月21日,TCL電子公布2024年上半年全球出貨量數(shù)據(jù),TCL電子表示,得益于公司在全球市場的積極開拓和品牌影響力的
據(jù)美國趣味科學(xué)網(wǎng)站16日報(bào)道,來自美國麻省理工學(xué)院、美國陸軍作戰(zhàn)能力發(fā)展司令部(DEVCOM)陸軍研究實(shí)驗(yàn)室和加拿
全球LED市場復(fù)蘇,車用照明與顯示、照明、LED顯示屏及不可見光LED等市場需求有機(jī)會逐步回溫,億光下半年車用及
三星最新推出的Galaxy Watch 7,繼續(xù)重新定義可穿戴技術(shù)的極限。這款最新型號承襲了其前身產(chǎn)品的成功之處,同時
2024年第二季度,在印度大選、季節(jié)性需求低迷以及部分地區(qū)極端天氣等各種因素的影響下,印度智能手機(jī)市場微增1%
根據(jù)TechInsights無線智能手機(jī)戰(zhàn)略(WSS)的最新研究,2024年Q1,拉丁美洲智能手機(jī)出貨量強(qiáng)勁增長,同比增長21%。
Chiplet的出現(xiàn)標(biāo)志著半導(dǎo)體設(shè)計(jì)和生產(chǎn)領(lǐng)域正在經(jīng)歷一場深刻的變革,尤其在設(shè)計(jì)成本持續(xù)攀升的背景下。
7月25日,由全球領(lǐng)先的專業(yè)電子機(jī)構(gòu)媒體AspenCore與深圳市新一代信息產(chǎn)業(yè)通信集群聯(lián)合主辦的【2024國際AIoT生
“芯”聚正當(dāng)時!第二十一屆中國國際半導(dǎo)體博覽會(IC?CHINA?2024)正式定檔,將于2024年11月18-20日在北京·國家
7月25日,由全球領(lǐng)先的專業(yè)電子機(jī)構(gòu)媒體AspenCore與深圳市新一代信息產(chǎn)業(yè)通信集群聯(lián)合主辦的【2024國際AIoT生
2024年7月17日-19日,國內(nèi)專業(yè)的電子元器件混合分銷商凱新達(dá)科技(Kaxindakeji)應(yīng)邀參加2024年中國(西部)電子信息
在7月12日下午的“芯片分銷及供應(yīng)鏈管理研討會”分論壇上,芯片分銷及供應(yīng)鏈專家共聚一堂,共謀行業(yè)發(fā)展大計(jì)。
7月8日-10日,2024慕尼黑上海電子展(elec-tronica China)于上海新國際博覽中心盛大開展,凱新達(dá)科技被邀重磅亮
2024年7月8日到10日 ,浙豪半導(dǎo)體(杭州)有限公司作為小華半導(dǎo)體的優(yōu)秀合作伙伴,在2024慕尼黑上海電子展上展出了
7月25日,由全球領(lǐng)先的專業(yè)電子機(jī)構(gòu)媒體AspenCore與深圳市新一代信息產(chǎn)業(yè)通信集群聯(lián)合主辦的【2024國際AIoT生
近日,2024?Matter?中國區(qū)開發(fā)者大會在廣州隆重召開。
7月25日,由全球領(lǐng)先的專業(yè)電子機(jī)構(gòu)媒體AspenCore與深圳市新一代信息產(chǎn)業(yè)通信集群聯(lián)合主辦的【2024國際AIoT生
7月13日,以“共筑先進(jìn)封裝新生態(tài),引領(lǐng)路徑創(chuàng)新大發(fā)展”為主題的第十六屆集成電路封測產(chǎn)業(yè)鏈創(chuàng)新發(fā)展論壇(CIPA
新任副總裁將推動亞太地區(qū)的增長和創(chuàng)新。
點(diǎn)擊查看更多
北京科能廣告有限公司深圳分公司 版權(quán)所有
分享到微信
分享到微博
分享到QQ空間
推薦使用瀏覽器內(nèi)置分享
分享至朋友圈